
SolvOpt
The Solver For Local Nonlinear

Optimization Problems
 Matlab, C and Fortran Source Codes

Alexei Kuntsevich
Franz Kappel

SolvOpt

version 1.1

is the Matlab, C and Fortran source codes

for solving nonlinear (nonsmooth) optimization problems.

SolvOpt is a freeware and comes with no warranty.

Institute for Mathematics

Karl-Franzens University of Graz

June, 1997

i1

Contents
What is new in version 1.1..i2

1 Tutorial 1-1
Installation..1-2

Matlab...1-2
FORTRAN ...1-2
C...1-3

Examples..1-4
Matlab sample functions ..1-4

Unconstrained minimization .. 1-4
User-supplied gradients ..1-5

Constrained minimization .. 1-6
Minimization of a penalty function with a penalty coefficient given by the user.....1-7
Solution of a constrained problem by use of the exact penalty function..................1-9

FORTRAN sample routines...1-13
Unconstrained minimization .. 1-13
Constrained minimization .. 1-14

C samples..1-18
Unconstrained minimization .. 1-18
Constrained minimization .. 1-19

Parameters as arguments...1-22
Required accuracy of the solution..1-23
Upper bound error for the constraints..1-24
Displaying intermediate results, warning and error messages..........1-25
Return code and counters ..1-25
Default parameter settings ...1-26

Recommendations ..1-28

2 Description of the algorithm....... 2-1
Shor's r-algorithm ...2-1
Initial trial step size ...2-2

i2

Re-Initialization .. 2-3
The step size strategy ... 2-4
Termination.. 2-6
Other heuristic procedures implemented ... 2-7

3 Reference3-1
Distributed source codes... 3-1

solvopt ...3-4
Language specific descriptions.. 3-4

Matlab ..3-4
FORTRAN..3-7
C ...3-9

Return codes, error and warning messages.....................................3-11
apprgrdn...3-15
soptions..3-17

solvopt.h ...3-17
REFERENCES ..3-18
Acknowledgements ..3-19

i3

What is new in version 1.1

The new features of SolvOpt 1.1 are:

• the program itself calculates a suitable penalty coefficient for a set of
constraints, however, still no information about Lagrange multipliers is
computed,

• warning messages come every time when the program detects an irregular
(complicated) case, so the user is aware of possible failures,

• the routine does not stop at a point, where no function value is available or it
equals infinity, or gradient is zero, unless it fails to find a way to pass through a
"bad" area,

• the code is better adapted to minimization of badly scaled, almost "flat" and
extremely "steep" functions,

• a new procedure for approximating the gradients by the finite differences
provides more robustness in the case, when analytically calculated gradients are
not available,

• the manual is completed by including the chapters specific for a particular
programming language,

• every language specific distribution package contains sample problem files
illustrating minimization of a differentiable and nonsmooth objective function
and solving constrained nonlinear programming problem with the use of either
the intrinsic procedure for calculating a suitable penalty coefficient or a penalty
coefficient given a priori by the user.

The results illustrating the performance of the program are presented on the web,
but not given in this manual.

Fortran-77 version is no more supported.

The M-function solvplot.m for the mesh, contour and solution path plottings is
no more supplied.

1 Tutorial
The program SolvOpt (Solver for local optimization problems) is concerned with
minimization or maximization of nonlinear, possibly non-smooth objective
functions and with the solution of nonlinear programming problems taking into
account constraints by the so-called method of exact penalization.

Type Problem

Unconstrained
Optimization

{ }min ():f x x n∈R (MIN)

{ }max ():f x x n∈R (MAX)

Constrained
Minimization { }min (): () , () , , () , ()f x g x h x x g x h xn m l≤ = ∈ ∈ ∈0 0 R R R (NLP)

The program solvopt requires that the user supplies at least a routine which
computes the values of the objective function at a given point. Unless the user also
provides a code for computing the (sub)gradient of the objective function, these
(sub)gradients are calculated by the program itself using finite differences.
For a constrained minimization problem, the user is required to supply additionally
at least a routine which computes the maximal residual for a set of constraints at a
given point. By analogy with the case of unconstrained optimization, the user may
also provide a code for computing the (sub)gradient of a constraint function with
the maximal residual at a point.

Remark. SolvOpt provides a general optimization tool applicable for a wide class
of nonlinear optimization problems. However, it seems useless to apply it for
solving linear and quadratic programming problems. The other optimization
packages, which are particularly oriented on solution of these problems, essentially
use the features of a specific class of problems and provide a higher efficiency.

Installation

SolvOpt User's Guide1-2

Installation

Matlab
Instructions for installing toolboxes are found in the section entitled "Installing
Toolboxes" in the computer-specific section of the MATLAB User's Guide.

With MATLAB 4.2 for MS Windows one has to modify the file MATLABRC.M
found in the MATLAB root directory as follows. Find the section starting with

matlabpath([...

and add the lines

'c:\matlab\toolbox\solvopt;',...

'c:\matlab\toolbox\solvopt\uncprobs;',...

With MATLAB 4.2 for HP Unix one has to create the folders

/users/me/solvopt

/users/me/solvopt/uncprobs

copy the SolvOpt files to these folders, modify the .cshrc file in your root folder
by additing the two lines

setenv MATLABPATH /users/me/solvopt/Matlab

setenv MATLABPATH /users/alex/solvopt/Matlab/uncprobs

FORTRAN
The MS FORTRAN PowerStation 1.0 users must store the source files to a single
folder and create a new project by including the program files and one of those
sample problem files supplied, build an .EXE file and run a test.

With the aim to solve a new problem, edit the project by substituting a sample
problem file with the problem file. Then rebuild the project and run the executable
file.

Installation

Tutorial 1-3

One can find comprehensive instructions on building MS Fortran projects in the
MS FORTRAN PowerStation 1.0 help library.

The HP FORTRAN-90 users must store the source files to a single folder and
make an executable sample problem file. You might need to edit the supplied
makefile, if the standard FORTRAN-90 libraries are named or stored
differently.

C
The MS Visual C users must store the source files to a single folder and create a
new project by including the program files and one of those sample problem files
supplied, build an .EXE file and run a test.

With the aim to solve a new problem, edit the project by substituting a sample
problem file with the problem file. Then rebuild the project and run the executable
file.

One can find comprehensive instructions on building MS Visual C projects in the
MS VC help library.

The HP C users must store the source files to a single folder and make an
executable sample problem file. You might need to edit the supplied makefile, if
the standard C libraries are named or stored differently.

The Linux C users must install the source library according to the Linux
specifications and comment out the line

#include <math.h>

in all supplied source files.

There is no sample makefile specific for Linux, so you have to create a one
yourself.

Examples

SolvOpt User's Guide1-4

Examples
In this section, we explain how to use SolvOpt by its application to the sample
problems. We do this separately for every programming language used. Do not be
confused with the fact that the Matlab, FORTRAN and C versions of the solver,
which are actually identical, produce slightly different results. This is caused by the
differences in the way the floating point operations are performed.

Matlab sample functions
In this section we explain how to use the M-function solvopt closely following
the first demonstration in the M-file solvdemo.

Unconstrained minimization

Problem 1. Shor's piece-wise quadratic function

Find

{ }min ():f x x n∈R ,

where

{ }f x x i m
i

() max (): ,...,= =ϕ 1 , ϕ
i i j ijj

n

x b x a() ()= −
=∑ 2

1
,

()x x x
n= 1

,..., , ()b b
i= is a given m -vector and ()A a

ij= , i m= 1,..., ,

j n= 1,..., , is a given m n× matrix.

To solve this problem with n = 5 and m = 10 for a particular choice for b and A
write an M-file that returns the function value at a point.

Solution. Step 1. Write the following M-file:
function f=shorf(x)
a=[0, 2, 1, 1, 3, 0, 1, 1, 0, 1;...
 0, 1, 2, 4, 2, 2, 1, 0, 0, 1;...
 0, 1, 1, 1, 1, 1, 1, 1, 2, 2;...
 0, 1, 1, 2, 0, 0, 1, 2, 1, 0;...
 0, 3, 2, 2, 1, 1, 1, 1, 0, 0];
b=[1; 5; 10; 2; 4; 3; 1.7; 2.5; 6; 4.5];

Examples

Tutorial 1-5

f=0;
 for i=1:10
 d=b(i)*sum((x-a(1:5,i)).^2);
 if d>f;f=d;end
 end

Next, invoke the routine solvopt.

Solution. Step2. Invoke the optimization routine:
x=[-1;1;-1;1;-1]; % Starting Point
[x,f]=solvopt(x,'shorf')

After 515 function evaluations, this produces the solution:

x =
 1.12437450703594
 0.979399386605537
 1.47744316500768
 0.920360602026234
 1.12420844022117
f =
 22.6001638723023

User-supplied gradients

SolvOpt calculates gradients by finite difference approximation (see
apprgrdn.m in the Reference part). The other possibility is to supply analytically
calculated partial derivatives.

To solve Problem 1 using analytically calculated gradients proceed as follows.

Solution.

Step 1. Write an M-file shorf that supplies the value of the objective function at a
given point (see above)

Step 2. Write an M-file that supplies the gradient of the objective function at a
given point:

function g=shorg(x)
a=[0, 2, 1, 1, 3, 0, 1, 1, 0, 1;...
 0, 1, 2, 4, 2, 2, 1, 0, 0, 1;...
 0, 1, 1, 1, 1, 1, 1, 1, 2, 2;...

Examples

SolvOpt User's Guide1-6

 0, 1, 1, 2, 0, 0, 1, 2, 1, 0;...
 0, 3, 2, 2, 1, 1, 1, 1, 0, 0];
b=[1; 5; 10; 2; 4; 3; 1.7; 2.5; 6; 4.5];
f=0;
 for i=1:10
 d=b(i)*sum((x-a(1:5,i)).^2);
 if d>f;f=d;k=i;end
 end
 g=b(k)*.5*(x-a(1:5,k));

Next, invoke the routine solvopt.

Solution. Step3. Invoke the optimization routine:

x=[-1;1;-1;1;-1]; % Starting Point
[x,f]=solvopt(x,'shorf','shorg')

After 176 function evaluations and 59 gradient evaluations, this produces the
solution:

x =
 1.12434198921972
 0.979451962903515
 1.47764128967286
 0.920240641355049
 1.12427862238767
f =
 22.6001630849795

The sample problem M-files may be structured differently. One can use an
initialization function for setting the constants specific for the problem. These
constants should be declared as global in the three functions, the initialization
routine, the one returning the function value and the one calculating the gradient.
This way, the global parameters become available from the Matlab work space after
invoking the initialization function. The next section provides an example of the
use of global parameters.

Examples

Tutorial 1-7

Constrained minimization

Consider now a constrained optimization problem and the way it can be reduced to
the minimization of a non-smooth penalty function. With the first example, we
consider the case, when a penalty coefficient is chosen a priori by the user. In the
second one, the intrinsic adjusting procedure for a penalty coefficient is used.

Minimization of a penalty function with a penalty coefficient
given by the user

If you doubt on a value of a penalty coefficient, it is better to let the program itself
find a suitable one. However, there are some constrained problems, for which the
exact penalty coefficients are known. The following example illustrates the solution
of a one.

Problem 2. Ill-Conditioned Linear Programming Problem [Ki85]
Find

{ }min :c x x
T n∈R

subject to
Ax b≤ , x ≥ 0 ,

where

()A aij= , a i jij = +1 / () , i j n, ,..., ,= 1

b i ji j

n= +
=∑ 1
1

/(), i n= 1,..., ,

c i i ji j

n= − + − +
=∑1 1 1
1

/() /(), i n= 1,..., .

This problem is ill-conditioned for n ≥ 5 , since A is essentially a part of Hilbert's
matrix. The problem can be solved by minimization of the exact penalty function

()c x r x Ax b
T + − −max , ,0

where r is the penalty coefficient.

For Problem 2, a suitable value of the penalty coefficient (r n= 2) is known.
Therefore, it is worth to use this value explicitly.

Solution.

Examples

SolvOpt User's Guide1-8

Step 1. Write an M-file that sets the values for the constant vectors and matrices:

function x=initill(n)
% INITILL sets the values for n*n matrix A and n-dimensional vectors B and C
global matrA vectB vectC
vectB=[]; vectC=[]; matrA=[];
 for i=1:n,
 x(i)=0; vectB(i)=0;
 for j=1:n
 matrA(i,j)=1/(i+j); vectB(i)=vectB(i)+1/(i+j);
 end
 vectC(i)=-1/(i+1)-vectB(i);
 end
 vectB=vectB'; vectC=vectC'; x=x';

Step 2. Write an M-file that supplies the exact penalty function value at a point:

function f=illclinf(x)
% The function ILLCLINF returns value of the exact penalty function
% at a point for the Ill-conditioned Linear Programing problem.
global matrA vectB vectC
if size(x,2)>1, x=x'; end, n=size(x,1);
f=vectC'*x + 2*n*max([0;matrA*x-vectB;-x]);

Step 3. Invoke the optimization routine:

x=initdual; % Get the starting point and set the globals
[x,f]=solvopt(x,'illclinf')

After 687 function evaluations, this produces the solution:

x =
 1.00009381952471
 0.99952814062634
 1.00068930581739
 0.999287744917841
 1.00050586697905
 1.0000189905597
 1.00054017839116
 1.00067368900695
 0.999251893713646
 0.999428402984036
 0.998217364046941
 1.00066418869783

Examples

Tutorial 1-9

 1.00070780745505
 0.999440830439142
 1.0009920171358
f =
 -20.0420010545132

Solution of a constrained problem by use of the exact penalty
function

In this subsection, we consider a sample constraint problem and the way it can be
solved by exact penalty function method and with the use of SolvOpt intrinsic
procedure for adjusting a penalty coefficient.

The following general conditions are to be fulfilled:

• the problem is to be formulated in the standard form (NLP):

{ }min (): () , () , , () , ()f x g x h x x g x h xn m l≤ = ∈ ∈ ∈0 0 R R R ,

• the maximal residual for a set of constraints at a point x is calculated as

()[]{ }max max max , () max ()
,..., ,...,

,
i m i j l j

g x h x= =1 1
0 , (RES)

• the gradient (if supplied) of a constraint function at a point is the gradient of a
constraint function with the maximal residual (RES) at a point.

Problem 3. Shell Dual Problem

Find

{ }min ():f x x n

0
∈R

subject to
f x
i
() ,≤ 0 i m= 1,..., ,

x
j

≥ 0, j n= 1,..., ,

where n = 15 , m = 5 , x
y

z
=







 , y ∈R5 , z ∈R10 .

f x d y y Cy b zT T T

0

3

2() ,= + −

f x Az Cy d y e
i i i

T

i
() () () ,= − − −2 3

3 i = 1 5,..., ,

Examples

SolvOpt User's Guide1-10

d e, ∈R5 resp. b ∈R10 are given vectors, and C is a given 5 5× -matrix and

A is a given 5 10× -matrix. The given constrained problem can be solved by
minimizing the exact penalty function

()f f x r x x f x f x
p n m

= + − −
0 1 1

0() max , ,..., , (),..., () ,

where r is the penalty coefficient.

We shall consider Problem 3 with the following data:

A
T = b =

 -16 2 0 1 0 -40
 0 -2 0 .4 2 -2
 -3.5 0 2 0 0 -0.25
 0 -2 0 -4 -1 -4
 0 -9 -2 1 -2.8 -4
 2 0 -4 0 0 -1
 -1 -1 -1 -1 -1 -40
 -1 -2 -3 -2 -1 -60
 1 2 3 4 5 5
 1 1 1 1 1 1

C = d = e =
 30 -20 -10 32 -10 4 -15
 -20 39 -6 -31 32 8 -27
 -10 -6 10 -6 -10 10 -36
 32 -31 -6 39 -20 6 -18
 -10 32 -10 -20 30 2 -12

Solution.

Step 1. Write an M-file that sets the values for the constant vectors and matrices:

function x=initdual()
global A B C D E
A= [-16, 2, 0, 1, 0;...
 0, -2, 0, .4, 2;...
 -3.5, 0, 2, 0, 0;...
 0, -2, 0, -4, -1;...
 0, -9, -2, 1, -2.8;...
 2, 0, -4, 0, 0;...
 -1, -1, -1, -1, -1;...
 -1, -2, -3, -2, -1;...

Examples

Tutorial 1-11

 1, 2, 3, 4, 5;...
 1, 1, 1, 1, 1];
B= [-40; -2; -.25; -4; -4; -1; -40; -60; 5; 1];
C= [30, -20, -10, 32, -10;...
 -20, 39, -6, -31, 32;...
 -10, -6, 10, -6, -10;...
 32, -31, -6, 39, -20;...
 -10, 32, -10, -20, 30];
D= [4; 8; 10; 6; 2];
E= [-15; -27; -36; -18; -12];
x= [1.e-4;1.e-4;1.e-4;1.e-4;1.e-4;...
 1.e-4;1.e-4;1.e-4;1.e-4;1.e-4;...
 1.e-4; 60;1.e-4;1.e-4;1.e-4];

Step 2. Write an M-file that supplies the objective function value at a point:

function f=dsobjf(x)
global A B C D E
x=x(:);
f=2*D'*x(1:5).^3 + (C*x(1:5))'*x(1:5) - B'*x(6:15);

Step 3. Write an M-file that supplies the gradient of the objective function at a
point:

function g=dsobjg(x)
global A B C D E
x=x(:);g=x;
g(1:5)=6*D.*x(1:5).^2 + 2*C*x(1:5);
g(6:15)= - B;

Step 4. Write an M-file that supplies the MAXIMAL RESIDUAL for the set of
constraints at a point:

function f=dscntf(x)
global A B C D E
x=x(:);
f=max([A'*x(6:15)-2*C*x(1:5)-3*D.*x(1:5).^2-E; -x]);

Step 5. Write an M-file that supplies the gradient of a constraint with the
MAXIMAL RESIDUAL at a point:

function g=dscntg(x)
global A B C D E
x=x(:); g=zeros(size(x));

Examples

SolvOpt User's Guide1-12

[f,k]=max([A'*x(6:15)-2*C*x(1:5)-3*D.*x(1:5).^2-E; -x]);
if f>0,
 if k>5, g(k-5)=-1;
 else, g(6:15)=A(:,k);
 g(1:5)=-2*C(:,k);
 g(k)=g(k)-6*D(k)*x(k);
 end
end

Step 6. Invoke the optimization routine:

x=initdual; %Get the starting point and set the globals
[x,f]=solvopt(x,'dsobjf','dsobjg',[],'dscntf','dscntg')

After 1047 function evaluations and 296 gradient evaluations, this produces the
solution:

x =
 0.300278569534156
 0.333218485705157
 0.400287704078501
 0.428099403397778
 0.224208296195057
 2.11686313222728e-009
 5.38814286825384e-008
 5.17010727665834
 9.38425731472533e-008
 3.06211609161864
 11.8350264103085
 -4.8754715160715e-009*

 -5.33007731972345e-009*

 0.103743920438453
 3.49071860248073e-007
f =
 32.3486841145684

* - The admissible upper bound on the maximal residual for a set of constraints is
set to 10-8 by default. The optional parameters to the function solvopt and their
default values are discussed in the section The default parameter settings.

Problem 3 can be solved without user-supplied analytical gradients by invoking the
function solvopt as follows:

x=initdual; %Get the starting point and set the globals

Examples

Tutorial 1-13

[x,f]=solvopt(x,'dsobjf',[],[],'dscntf')

After 5516 function evaluations, this produces the solution:

x =
 0.300140731071454
 0.332763649376293
 0.400037600956474
 0.428112829612298
 0.224617359277728
 7.85469511969064e-009
 5.06335656775549e-007
 5.17065381492976
 1.74499313839886e-006
 3.06343775013392
 11.8385395874395
 -8.11639978175619e-009
 2.25878690707955e-007
 0.105231979218134
 5.85235333566764e-006
f =
 32.3487225349038

FORTRAN sample routines
Here we assume that MS FORTRAN 1.0 for Windows is used. Me assume this just
to avoid using twice as many terms to describe what the user must do. Thus, if you
find "(re)build the project", the UNIX users should understand this as "make the
executable file". The instruction "edit the project" is the same as "edit the makefile"
by doing whatever follows. The file extension .f is always used for HP F90 source
files.

Unconstrained minimization

We shall consider Problem 1 (minimization of Shor's piece-wise quadratic
function) with the same initial data as above.

The sample file shor.for contains the main program, the data initialization
subroutine shorinit and the subroutines for calculating objective function values
(shorf) and gradients (shorg). The main program sets the flags used, calls to the
initialization subroutine and to the solver (subroutine solvopt) and prints the
obtained solution. The subroutines shorf and shorg calculate the objective

Examples

SolvOpt User's Guide1-14

function value, resp. the gradient, at a point. The problem data is passed to these
routines from shorinit by use of the common block.

The flag flg controls the way the gradients are calculated. It is set to .true.,
meaning the analytically calculated gradients are used. Turn it to .false. to use
the finite difference approximation of the gradients.

To minimize this sample function start a new MS FORTRAN project and include
the files solvopt.for, shor.for, soptions.for and apprgrdn.for to
the project.

Build the project.

Note: The include file messages.inc must be stored in the same folder/directory
as the file solvopt.for. The HP UNIX users must take care about the correct
path to the HP F90 libraries. The provided sample makefile should be edited
with this aim.

Run the project.

At the standard output screen, you will see the results of this run:

SolvOpt: Normal termination.

 Function Value ===== Evaluations == Iterations

 22.6001633489763 179 + 61 60

Optimum Point X:

 1.12439469387304
 .979431355218914
 1.47764382403059
 .920327774244919
 1.12425127557092

Constrained minimization

We shall consider Problem 3 (Shell Dual Problem) with the same initial data as
above.

The sample files dualshl0.for, dualshl1.for, dualshl2.for,
dualcnst.for and dualcnt2.for contain the codes providing different
solution cases. With these files we illustrate

Examples

Tutorial 1-15

1. How to use common blocks (see the files dualshl1.for and
dualshl2.for) or extra entries to a subroutine/function (see the other three
files) to pass the parameters to the user's routines,

2. How to solve a constrained problem by use of the exact penalty method, when a
suitable value for a penalty coefficient is known a priori (see the files
dualshl0.for, dualshl1.for and dualshl2.for) and how to solve
a constrained problem by use of the intrinsic features of the solver (see the other
two files),

3. How to use analytically calculated gradients (see files dualshl0.for,
dualshl1.for and dualcnst.for) and the finite difference
approximation scheme (see the other two files).

All these sample files contain detailed comments and may be used as the patterns
when coding a real optimization problem.

Let us start with the sample problem file dualshl0.for.

Start a new MS FORTRAN project and include the files solvopt.for,
dualshl0.for, soptions.for and apprgrdn.for to the project.

Build the project and run it.

At the standard output screen, you will see the results of this run:

SolvOpt: Normal Termination

 Function Value ===== Evaluations == Iterations
 32.3486977724605 1106 + 318 317

 Optimum Point X:

 .299426825546335
 .333249409434943
 .400064007985528
 .428736534806681
 .224313069068149
 .223385131546603E-07
 .404749677131543E-06
 5.17763934177275
 .184116671220153E-06
 3.06147697520654
 11.8402600598917
 .243820289395243E-07
 .770361407720566E-08
 .104299707589751
 .223357529469471E-05

Examples

SolvOpt User's Guide1-16

Next, edit the project by substituting the file dualshl0.for by the file
dualshl2.for.

Rebuild and rerun the project.

This produces the following output:

SolvOpt: Normal Termination

 Function Value ===== Evaluations == Iterations
 32.3488027613418 6214 + 0 316

 Optimum Point X:
 .300652416460482
 .334052227663560
 .400675148395390
 .428306248210853
 .223898350862328
 .224165785297217E-07
 .879443464886512E-07
 5.16983078257772
 .344057985833308E-05
 3.05933154720805
 11.8358549467195
 .182872657231329E-07
 .668174738032022E-09
 .104270343767744
 .342688229519250E-06

Next, edit the project by substituting the file dualshl2.for by the file
dualcnst.for.

Rebuild and rerun the project.

This produces the following output:

SolvOpt: Normal Termination

 Function Value ===== Evaluations == Iterations
 32.3486813349962 1076 + 308 306
 1076 + 177

 Optimum Point X:
 .300324855074108
 .333292913854715
 .400173684256855
 .428061656040750
 .224106830081349
 -.290494843133336E-08
 .284518638024732E-07

Examples

Tutorial 1-17

 5.17038258440066
 -.807298523922867E-08
 3.06188088571973
 11.8364616839891
 -.801837606700664E-08
 .292773805446577E-09
 .103865591612960
 .143687435030575E-06

Next, edit the project by substituting the file dualcnst.for by the file
dualcnt2.for.

Rebuild and rerun the project.

This produces the following output:

SolvOpt: Normal Termination

 Function Value ===== Evaluations == Iterations

 32.3488511257384 5827 + 0 294
 3997 + 0

 Optimum Point X:
 .300043713568156
 .333294112865937
 .400890950005057
 .428629367367550
 .224695236327456
 -.680417714539980E-08
 .103801005551412E-04
 5.17113192186795
 .283637113183106E-06
 3.06147738310861
 11.8330115694190
 -.105153655627659E-08
 .657500293656519E-09
 .104665576720755
 .433417542039363E-06

Remark. Under the title "Evaluations", the values of the four returned counters are
printed. In the first row, the numbers of objective (or penalty) function and gradient
evaluations are given. In the second row, if it is printed, the numbers of constraint
functions and gradient evaluations are given. These four runs illustrate that if the
analytically calculated gradients are used (see the first and third runs), the solution
is more precise then when making use of the gradient approximation by the finite
differences.

Examples

SolvOpt User's Guide1-18

C samples
Here we assume that MS Visual C is used. Me assume this just to avoid using twice
as many terms to describe what the user must do. Thus, if you find "(re)build the
project", the UNIX users should understand this as "make the executable file". The
instruction "edit the project" is the same as "edit the makefile" by doing whatever
follows.

Unconstrained minimization

We shall consider Problem 1 (minimization of Shor's piece-wise quadratic
function) with the same initial data as above.

The sample file shor.c contains the main function and the functions for
calculating objective function values and gradients. It starts with the include
directives (see the note below). The user must include the header file solvopt.h
to a function calling to the function solvopt.

Next, the program data is set to be available globally in the functions shorf and
shorg. The main function follows these data specifications and is aimed to invoke
the solver and to print the solution obtained. The functions shorf and shorg
calculate the objective function value, resp. the gradient, at a point.

The parameter user_supplied_gradients controls the way the gradients are
calculated. It is set to 1, meaning the analytically calculated gradients are used.
Turn it to 0 to use the finite difference approximation of the gradients.

To minimize this sample function start a new MS VC project and include the three
files solvopt.c, apprgrdn.c and shor.c to the project.

Build the project.

Note: Pay attention to the header files used. The HP UNIX users must take care
about the correct path to the C libraries and header files. The provided sample
makefile should be edited with this aim. The Linux users additionally must
comment out the line #include <math.h> in all C source files supplied.

Run the project.

At the standard output screen, you will see the results of this run:

SolvOpt: Normal termination.

Examples

Tutorial 1-19

 Function Value ===== Evaluations === Iterations
 22.6001633 179+ 61 60

 Optimum Point X:
 1.12439469
 0.979431355
 1.47764382
 0.920327774
 1.12425128

Constrained minimization

We shall consider Problem 3 (Shell Dual Problem) with the same initial data as
above.

The sample file nlpsmple.c contains the main function and the functions for
calculating objective function values and gradients, maximal residuals for a set of
constraints and gradients for constraints. The main function is aimed to invoke the
solver and to print the solution obtained.

The user may pass up to two parameters to the main function by typing their values
in the command line. These parameters specify the way the gradients are
calculated, analytically or by the finite differences, and the way the penalty
coefficient is calculated, by taking the default value or by use of the solver intrinsic
adjusting procedure. The first parameter (user_supplied_gradients) is set
to 1 by default, meaning the analytically calculated gradients are used. Type 0 as
the first value in the command line after the project name to use the finite
difference approximation of the gradients. The default value of the second
parameter (as_constrained_problem) is also 1, meaning the penalty
coefficient is adjusted automatically. Type 0 as the second value in the command
line after the project name to use the pre-defined penalty coefficient instead.

The functions dsobjf and dsobjg calculate the objective function value, resp.
the gradient, at a point. If as_constrained_problem=0, these function
calculate the values, resp. the gradients of the penalty function at the pre-defined
value of the penalty coefficient.

The functions dscntf and dscntg calculate the maximal residual for a set of
constraints, resp. the gradient of a constraint with the maximal residual, at a point.

To solve this sample constrained problem start a new MS VC project and include
the three files solvopt.c, apprgrdn.c and nlpsmple.c to the project.

Examples

SolvOpt User's Guide1-20

Build the project with the name sample.

Case 1.

> sample equivalent to > sample 1 1
SolvOpt warning:
Re-setting due to the use of a new penalty coefficient.
SolvOpt: Normal termination.

 Function Value ===== Evaluations === Iterations
 32.3486813 1076+ 308 306
 1076+ 177

 Optimum Point X:
 0.300324855
 0.333292914
 0.400173684
 0.428061656
 0.22410683
 -2.90494799e-009
 2.84518649e-008
 5.17038258
 -8.07298191e-009
 3.06188089
 11.8364617
 -8.01840543e-009
 2.92774205e-010
 0.103865592
 1.43687428e-007

Case 2.

> sample 1 0
SolvOpt: Normal termination.

 Function Value ===== Evaluations === Iterations
 32.3486978 1106+ 318 317
 0+ 0

 Optimum Point X:
 0.299426825
 0.333249409
 0.400064008
 0.428736535
 0.224313069
 2.23384349e-008
 4.04748235e-007
 5.17763934
 1.84117123e-007
 3.06147698

Examples

Tutorial 1-21

 11.8402601
 2.43819999e-008
 7.70359665e-009
 0.104299708
 2.23357491e-006

Case 3.

> sample 0 equivalent to > sample 0 1
SolvOpt warning:
Re-setting due to the use of a new penalty coefficie
SolvOpt: Normal termination.

 Function Value ===== Evaluations === Iterations
 32.3487289 6821+ 0 346
 4811+ 0

 Optimum Point X:
 0.300166339
 0.33315548
 0.399819535
 0.427900289
 0.223878321
 1.39143231e-007
 1.27240731e-006
 5.17158045
 6.97461307e-007
 3.06243783
 11.8371186
 2.85325022e-008
 6.60984423e-008
 0.102887626
 2.38186366e-005

Case 4.

> sample 0 0
olvOpt: Normal termination.

 Function Value ===== Evaluations === Iterations
 32.3486907 7539+ 0 382
 0+ 0

Optimum Point X:
 0.300043375
 0.333455818
 0.400153582
 0.428296402
 0.224002824

Parameters as arguments

SolvOpt User's Guide1-22

 4.53772266e-008
 2.09260635e-007
 5.17314421
 1.32575802e-006
 3.06119755
 11.8374662
 5.48131163e-010
 7.01715815e-009
 0.1035913
 7.01504614e-007

Remark. Under the title "Evaluations", the values of the four returned counters are
printed. In the first row, the numbers of objective (or penalty) function and gradient
evaluations are given. In the second row, the numbers of constraint functions and
gradient evaluations are given. The maximal residual for a set of constraints is
calculated at every point in any case, however, the gradients for the constraints are
calculated only at infeasible points (see cases 1 and 3). Since that, it is almost ever
more efficient to let the solver adjust the penalty coefficient by itself.

Parameters as arguments
To minimize a function one must pass to solvopt at least two parameters:

i) the starting point x and

ii) the name of the M-file (FORTRAN subroutine, C function) that returns the
objective function value at a given point.

The user may also pass to the solver the vector of optional parameters and the name
of the M-file (FORTRAN subroutine, C function) that returns the gradient of an
objective function at a given point.

To solve a constrained optimization problem, in addition to i) and ii), one must
pass to solvopt at least

iii) the name of the M-file (FORTRAN subroutine, C function) that returns the
maximal residual for a set of constraints at a given point

and optionally, the name of the M-file (FORTRAN subroutine, C function) that
returns the gradient of a constraint function with the maximal residual at a given
point.

The use of analytically calculated gradients of objective and constraint functions
has been described by the examples presented in the previous section. The use of
the optional parameters is illustrated below for the Matlab version only. For more

Parameters as arguments

Tutorial 1-23

information see the language specific descriptions of the solver in the Reference
part. The optional parameters options to the solver have the same meaning for
every programming language used. The exception is the numbering of elements in
the array options which is different in the C code. Namely, the indices start at 0
in C in contrary to Matlab and FORTRAN, where they start at 1.

As the starting point passed to solvopt.m is a column (row), the optimum point
that the routine returns is also a column (row).

When the function is called as follows:

x=solvopt(x,'fun',...),

it returns the optimizer only. The solver returns in addition the optimum function
value and the values of the optional counters in the row vector options, when it
is called as follows:

[x,f,options]=solvopt(x,'fun',...).

We shall consider the use of the optional tuning parameters by applying the solver
to Problem 1 (Shor's piece-wise quadratic function) and Problem 3 (Shell Dual
Problem).

Required accuracy of the solution
The two parameters, options(2) and options(3), set the required relative
errors for the argument and the function respectively. The default values are:
options(2)=1.e-4 and options(3)=1.e-6.

Let us solve Problem 1 at options(2)=1.e-6 and options(3)=1.e-8:

» options(2)=1.e-6; options(3)=1.e-8;
» x=[-1;1;-1;1;-1]; % the starting point
» [x,f,options]=solvopt(x,'shorf','shorg',options);
SolvOpt: Normal termination.

» format long
» x
x =
 1.12435189584326
 0.97946111531317
 1.47770710321265
 0.92023517830940
 1.12429094264600

Parameters as arguments

SolvOpt User's Guide1-24

» f
f =
 22.60016209626562
» options(9) % The number of iterations
ans =
 84
» options(10) % The number of function evaluations
ans =
 247
» options(11) % The number of gradient evaluations
ans =
 85

The minimum value 22.60016209626562 has been obtained after 247 function and
85 gradient evaluations (compare to the function value 22.6001630849795 obtained
after 176 function and 59 gradient evaluations at the default values of the optional
parameters).

Upper bound error for the constraints
The upper bound error for the constraints (the admissible maximal residual) is set
by options(6). By default, options(6)=1.e-8. One may require more or
less accurate solution by changing this value. Let us illustrate this with solution of
Problem 3.

» options=soptions; options(6)=1.e-12; x=initdual;
» [x,f,options]=solvopt(x,'dsobjf','dsobjg',options,
'dscntf','dscntg')

SolvOpt warning:
Re-setting due to the use of a new penalty coefficient.
SolvOpt: Normal termination.

» x
x =
 0.30007044533967
 0.33343008706542
 0.40014103298840
 0.42827843110839
 0.22403041097278
 0.00000000103196

Parameters as arguments

Tutorial 1-25

 0.00000002538532
 5.17292380053550
 0.00000000801245
 3.06128343859342
 11.83770574045488
 0.00000000089718
 0.00000000032974
 0.10374292520152
 0.00000001418269
» f
f =
 32.34867973890853
» options(10:13)
ans =
 1165 336 1165 194

After computing 1165 objective function values, 336 gradients of the objective
function, 1165 maximal residuals of the constraints and 194 gradients of a
constraint function, we have obtained a very precise solution (compare to the above
one obtained at the default value of options(6)).

Displaying intermediate results, warning and
error messages

This is controlled by the optional parameter options(5). The default value for
this parameter is 0.

One can suppress displaying the warning and error messages by setting
options(5) to a negative value.

One can view the intermediate results at every first, second, ..., k-th iteration by
setting options(5) respectively to 1,2,...,k. The display looks like this:

Iter.# Function ... Step Value ... Gradient Norm
 20 3.90622e+001 2.86653e-002 9.10076e+001

Return code and counters

Parameters as arguments

SolvOpt User's Guide1-26

The function solvopt returns the five parameters, options(9:13), in the case
of constrained minimization, and the three ones, options(9:11), otherwise.
The counters are:

options(10), for the number of objective function values,

options(11), for the number of gradients of an objective function,

options(13), for the number of gradients of a constraint with the maximal
residual at a point,

options(12), for the number of maximal residuals of constraints, and

computed.

If the finite difference approximation is used for the gradients of an objective
function or(and) constraints, the respective counter(s) for the number of gradients
evaluations returns zero.

The solver returns the termination code in options(9). If it is positive, it
provides the number of iterations made. If negative, the termination was abnormal.
The negative returning value of options(9) points to a (possible) reason of the
abnormal termination. The abnormal termination codes are discussed in the
language specific descriptions of the solver in the Reference part.

Default parameter settings
The options vector contains parameters used in the optimization routine. If, at
the call to the routine, the options vector is empty, all the parameters are set to
the default values. If options is passed and has fewer than 8 elements, the
remaining elements assume their default values. If the value specified for a
particular parameter is out of the range allowed, the parameter takes its default
value or the nearest bound value. The user may choose a value for any of the first 8
elements, however, one has to know exactly how the algorithm works if one
modifies the values for options(7) and options(8).

Note: In the C version, the index starts at 0.

No Functionality Default Description

1 Optimization
mode

-1 Controls the specific optimization mode and provides a
factor for the first trial step size
(minimization if sign(options(1))=-1,
maximization if sign(options(1))=1).

Parameters as arguments

Tutorial 1-27

For a constrained problem, maximization is not
allowed.

2 Required
accuracy for x

1.e-4 This parameter is used as the bound δ
x

 in the

termination criterion which uses the arguments. This
criterion is satisfied if the relative error in the
coordinates of the points obtained in two successive
iterations is less than δ

x
, i.e.,

() () ()x x x
k k x ki i i− ≤+ +1 1

δ , i n= 1,..., .

The range of admissible values for this parameter is
[1.e-12,1].

3 Required
accuracy for f

1.e-6 This parameter is used as the bound δ
f

 in the

termination criterion which uses the values of the
objective function. This criterion is satisfied if the
relative error in the function values obtained in two
successive iterations is less than δ

f
, i.e.,

f x f x f x
k k f k

() () ()− ≤+ +1 1
δ .

The range of admissible values for this parameter is
[1.e-12,1].

4 Maximum
number of
iterations

15000 The algorithm stops if the number of iterations exceeds
the value of this parameter. A corresponding message
is displayed.

5 Display 0 Controls the output during the optimization process:
options(5)=0 means that no intermediate results
are displayed, options(5)=N means that the results
for each N-th iteration are displayed,
options(5)=-1 suppresses error and warning
messages.

6 Required
accuracy for
constraints

1.e-8 This is the upper bound admissible value for the
maximal residual of a set of constraints at a point. The
program can stop normally, if a current point is feasible
to the extend of this value. The lower bound for this
parameter is 1.e-12.

7 Coefficient for
space dilation

2.5 Controls the space dilation. The default value for the
space dilation coefficient is 2.5. The lower bound for

Recommendations

SolvOpt User's Guide1-28

this parameter is 1.5.

8 Difference
approximation
of gradients

1.e-11 Lower bound for the stepsize used in the difference
approximation of gradients. The range of admissible
values for this parameter is [1.e-12,1].

Recommendations
Note: Everywhere an element of the array options is mentioned, the C users
must take into account that the index starts at 0 in C arrays, therefore, subtract a
unit from the index value.

When one uses the SolvOpt in order to minimize (maximize) a function with more
than one local minimum (maximum), one has to take into account the fact that
SolvOpt chooses the step size automatically by an adaptive procedure. The first
trial step size depends on the Euclidean norm of the gradient calculated at the
starting point. Because of this, it may happen that the optimization routine finds a
local optimum that is not the nearest to the starting point. If it is necessary to find
the nearest local optimum, the user has to adjust the first step size by setting
options(1) to a real number with absolute value less than 1.

With a starting point close to the optimizer, one may enlarge the space dilation
coefficient (options(7)) to achieve more rapid convergence. There is no limit
on this coefficient. However, the efficient range for most cases is between 2 and 4.
However, we strongly recommend using the default values for options(7).

If the objective function cannot be calculated exactly, in particular if the values of
the objective function are perturbed by bounded noise, the user must set
options(8) to the appropriate value to reduce the influence of noise on the
gradient calculated by the difference approximation.

Solving a constrained problem one may require a highly accurate result in terms of
the fulfillment of constraints. However, this may cause a very long run, especially
in the case of equality constraints. We suggest to use the default value for the upper
bound on the maximal admissible residual for the constraints and rerun the
program at a smaller value of this parameter if desperately needed and after
obtaining a solution at the default value of options(6).

SolvOpt is not designed to minimize (maximize) functions of scalars. The lowest
possible dimension for the argument is 2. If the starting point is a scalar, an error
message is displayed and the return code, options(9), is set to -1.

Recommendations

Tutorial 1-29

If the return code is negative, meaning the abnormal termination, the obtained
solution possibly does not provide the optimum. The displayed message points to
the reason of the abnormal termination. If it contains the suggestion on re-running
the solver from the obtained point, it is ever worth to do. Often, a termination
warning message comes because of detecting a "bad" area, which has been passed
by the solver successfully. Nevertheless, you must not fully trust the solution, if a
termination warning comes. The termination code and warning messages are
discussed in the Reference part.

It is almost ever more efficient to provide analytically calculated gradients for an
objective function and constraints. The user must take care of possible errors in the
user-supplied routines, especially the gradient calculating functions. We do not
provide a check utility for the gradients calculated analytically, however, there are
many such utilities available freely at public domain sites.

2 Description of the
algorithm

This chapter provides a detailed description for a version of Shor's minimization
method with space dilation [Sh85].

Shor's r-algorithm seems to be one of the most efficient methods for the
minimization of non-smooth (i.e., almost-differentiable) functions. However, a
serious problem for Shor's algorithm is the design of an efficient stopping criterion,
a difficulty common to all algorithms for optimization of non-smooth functions. A
further difficulty is the choice of initial step size. Below we describe in detail the
modifications and the additions which resulted in a robust and efficient algorithm.

The introduction to the algorithm starts with a description of Shor's original
method with space dilation along the difference of two successive subgradients.

Shor's r-algorithm
The main idea of the algorithm is to make steps in the direction opposite to a
subgradient at the current point. However, the steps are to be made in the
transformed space. The way to perform this transformation is quite simple. At each
iteration one calculates the difference between a subgradient at the current point
and that calculated at the previous step. The direction obtained is used to perform
dilation of the space with a given (inour case) a priori as coefficient α > 1

(options(7)) .

Let f(") be an almost-differentiable convex function defined on Rn which is
differentiable on its domain except on a set of measure zero. Let us denote an
almost-gradient of f(") at the point x by gf(x). Consider the following iterative
algorithm for minimization of the function f(").

Assume that after k iterations one has obtained the point x
k

, the space
transformation matrix B

k
 and the subgradient ~g

k
 of the function ϕ

k k
y f B y() ()=

at the point ~y B x
k k k

= −
−

1

1
.

At the (k+1)-th iteration the following calculations have to be performed:

Initial trial step size

SolvOpt User's Guide2-2

(1) Calculate g xf k() , a subgradient f at xk .

(2) Calculate g B g xk k
T

f k
* ()= , a subgradient of ϕ k at y B xk k k= −1 .

(3) Calculate r g gk k k= −* ~ , the difference of the two subgradients of ϕ k at yk and

~yk .

(4) Set ξk k kr r+ =1 / . The normalized vector ξk+1 is the direction of the next

space dilation to be performed.

(5) Calculate B B Rk k k+ +=1 1β ξ() , where β α= 1/ . The matrix R kβ ξ()+1 is the

inverse of R kα ξ()+1 , the matrix of the space dilation in the direction ξk+1 with

coefficient α given by

 R x x xk
T

k kα ξ α ξ ξ() ()()+ + += + −
1 1 1

1 , x n∈R .

(6) Calculate ~ ()g B g xk k
T

f k+ +=1 1 , a subgradient of the function

ϕ k ky f B y+ +=
1 1
() () at the point ~y B xk k k+ +

−=
1 1

1 .

(7) Choose a step size hk+1 .

(8) Set x x h B gk k k k k+ + + += −
1 1 1 1

~ .

(9) Check the stopping criterion and stop if it is satisfied. Otherwise proceed to the
next iteration.

To turn the r-algorithm as presented above into an efficient and robust optimization
routine, one has to find solutions to the following problems:

• Initialization and re-initialization of the space transform matrix Bk and

initialization of the step size hk .

• Choice of the step size hk+1 to optimize the efficiency of space dilation in the

direction of two consecutive subgradients (of the transformed function ϕ k).

• Construction of a stopping criterion which does not need information on
gradients.

In the following subsections we describe the solutions to these problems
implemented in SolvOpt. The solutions are heuristic.

Initial trial step size

Re-Initialization

Description of the algorithm 2-3

The initial value $h
1

 for trial step size has to meet the following obvious

requirements: (i) it must be large enough to avoid premature termination of the
process in the case where the starting point is far from the optimum, and (ii) it must
be small enough in the opposite case where the starting point and the optimum are
close to each other. How can we satisfy these requirements, having no other
information on the objective function but the starting point and the gradient
calculated at this point? In view of these conditions and our limited knowledge the
following formula is suggested for the first trial step along the gradient calculated
at the starting point:

()
$ max

log

,h
c

g
x

x1

2 0 2

0

1

=
+













∞δ ,

where c > 0 is the factor set by options(1) and δ
x

 is the required relative error

for the optimizer set by options(2) (see Tutorial).

Re-Initialization
The space transformation matrix holds the history of the optimization process. It
should cause the algorithm to make steps mostly towards the optimum instead of
along the current gradient, which may be almost orthogonal to the desired
direction. A similar strategy is pursued in quasi-Newton methods. However,
occasionally one has to forget the history of the optimization process. In particular,
this might be necessary when the objective function has the shape of a ravine.
There is no particular technique to recognize this. Nevertheless, any method that
holds the process history has to have such a "switch" to turn back to the initial
values and to start optimization from the current point in the same way as from the
starting point.

Since the space dilation coefficient is larger than 1, the norm of the gradients in the
transformed space decreases from iteration to iteration. If the dilations occur more
or less in the same direction, which is the most preferable situation, then the norm
of the transformed gradients possibly becomes close to zero only near the optimum.
However, if space dilations are repeatedly made in directions which almost give an
orthogonal basis of the space, then the norm of the transformed gradients may
become very small also far away from the optimum. Such a situation can occur for
ravine shaped functions (e.g. the Shell Dual Problem [LM78] and Shor's problem
[Sh85]) and for functions which are badly scaled (as for instance Meyer's function).

The step size strategy

SolvOpt User's Guide2-4

The problem is to decide when one should reset the algorithm, so that it starts anew
at the present point and the past history of the process does not interfere in
choosing the next direction to go. The following simple criterion is based on
heuristics and proved to be efficient.

Resetting of the space dilation matrix:

If at the k -th iteration the inequality

~g g
k

l

k2

15

2
10

2

≤ −

is satisfied, where g
k

, ~g
k

 are the gradients of the functions f x() and ϕ()y , l is

the number of nonzero coefficients of g
k

, then assume

B I
k

= , i.e., set the space transformation matrix to identity.

The step size strategy
Any optimization algorithm which uses the gradient of the objective function
invokes at each iteration a line search procedure to determine the step size. In
algorithms for smooth problems, the line search procedure usually tries to find or to
approximate the optimizer of the objective function f in the chosen direction.
However, in Shor's r-algorithm it seems to be necessary to find a step size such that
the optimizer for f in the chosen direction is a point between the current point and
the next point of the solution path. This is the most efficient way to guarantee that
the direction for space dilation at the next step (the difference of the gradients of f

at x
k

 and x
k+1) points in the direction where the valley of the objective function

which just has been crossed descends to a local minimum or ascends to a local
maximum. The step size strategy implemented in SolvOpt also avoids increasing
the objective function too much in one step. However, the objective function might
increase occasionally, so the algorithm is not a true descent algorithm. This fact,
together with the difficulty of keeping track of the successive space transformations,
is the main reason that at present there does not exist a sufficiently general proof of
convergence for the r-algorithm.

In the description below it is understood that the task is to find a local minimum of
the objective function. We assume that steps (1)-(6) of (k +1)-th iteration of the
r-algorithm have been completed, so

x
k

, g
k

, ~g
k+1 and B

k+1

The step size strategy

Description of the algorithm 2-5

are already computed. Moreover, the trial step size $hk+1 for the line search in the

(k +1)-th iteration has also been determined. Then we have to perform the
following calculations:

(a) Set jk+ =
1

0 , h hk k+ +=
1 1

$, x xk k+ =
1

0() and f f xk
() ()

()
0

1
0= + .

(b) Calculate ()γ = + −
min ,

max(log (),)
1+b b

g p qk

1
1 1

2
10 , where b1 =1.15,

b n2
2

1 01= + . / , p=20 is the starting value and q is the iteration counter reset

at every re-initialization of the transformation matrix.

(c) Calculate

 x x h B gk

j

k

j
k k k

k k

+
+

+ + + +
+ += −1

1

1 1 1 1
1 1

() ()
~ , f f x

j
k

j
k k() ()

()+ ++
+

+=1 11
1

1 .

(d) Set j jk k+ += +1 1 1 .

(e) If f f
j j
k k

() ()+ +≥ −
1 1

1γ , then set h hk k+ +=1 1 51/ . , jk+ =1 0 and continue with (c).

Otherwise go to (f).

(f) If f f
j j
k k

() ()+ +< −
1 1

1 , check the step counter, set

 h

h

h

h

h

j

j

j

j

k

k

k

k

k

k

k

k

k

+

+

+

+

+

+

+

+

+

=

>
≥ >
≥ >

≤










1

1

1

1

1

1

1

1

1

2

1 5

1 05

20,

10,

2

2

,

. ,

. ,

,

,

if

if 20

if 10

if

 and continue with (c). Otherwise go to (g).

(g) Set x xk k
jk

+ +
+= +

1 1
11() and

 ~
$ $ $

min(,)

j
x

h

x

h

x

h
ik

k

k

k

k

k i

k

= + +










−

−

+

+ =
∑∆ ∆ ∆1

1

1

1 1

3
2 3

,

 where ∆x x xk k k= − −1 2
.

 Check the value ~j and set

 $

~ $,

$,

~ / $,

~ ,

~ ,

~ .

h

j j h

h

j j h

j j

j j

j j

k

k

k

k

+

+

+

+

=
− +








>
=
<

2

0 1

1

0 1

0

0

0

1 if

if

if

Termination

SolvOpt User's Guide2-6

 where j0 =3.3, if the analytically calculated gradients are used, and j0 =6.3,

otherwise.

Note that item (g) is reached only if f x f xk
j

k
jk k() ()() ()

+ +
−+ +≥1 1
11 1 .

Termination
The stopping criterion used in SolvOpt (besides the condition that the maximum
number of iterations given by options(4) is not exceeded) can only be seen in
connection with the step size strategy implemented in SolvOpt. The efficiency of
the stopping criterion can be explained by the fact that, in general, the minimum
(maximum) of the objective function on the line joining xk and xk+1 is attained

at a point between xk and xk+1 . This prevents the step size from becoming too

small if xk is not close enough to the local minimizer (maximizer). In our test the

stopping criterion always guaranteed the required accuracy by choosing the
parameters options(2) and options(3) (i.e., δ x and δ f) appropriately.

The criterion:

If both the set of inequalities

x x x i nk
i

k
i

x k
i

+ +− ≤ =1 1 1δ , ,..., , (TERMX)

and the inequality

f x f x f xk k f k() () ()+ +− ≤1 1δ (TERMF)

are fulfilled, terminate the algorithm.

Here δ x and δ f are the required relative errors for the argument and function

value at the solution, respectively. These values are given by options(2) and
options(3) (see Default parameter settings in Tutorial).

Additionally, the algorithm stops,

1) if the condition f f
j j
k k

() ()+ +< −
1 1

1γ is not fulfilled at the smallest possible

stepsize (this may happen particularly in the case, when gradients are
approximated by the finite differences) or

2) if the condition (TERMX) is fulfilled and

Other heuristic procedures implemented

Description of the algorithm 2-7

f xk f()+ ≤
1

2δ and f x f xk k f() ()+ − ≤
1

δ

(this avoids iddling at very small absolute function values).

Other heuristic procedures implemented
If the regular stopping criteria (TERMX) and (TERMF) are not fulfilled, the
algorithm does not stop at a point, where the gradient is (approximately) zero in the
case of unconstrained optimization, unless it fails to find a point with a nonzero
gradient. This avoids a premature stop at a point, where the function is flat, but
takes no optimum.

If the condition (TERMF) is fulfilled alone and one or more elements of the
gradient calculated at a point are zero, the insensitive (with zero partial derivatives
at this point) variables are shifted manually in order to find a point with a smaller
function value. This is also made with the aim to avoid a premature stop at a point,
where the function is flat, but takes no optimum.

3 Reference
This chapter contains descriptions of the solvopt function/subroutine, auxiliary
routines and sample problem files. The functions/subroutines are listed within the
groups by their purpose, that is exactly in the order in which they are listed in the
tables below. Information is also available through the online help facility for
Matlab functions and readme files specific for a programming language. The
following tables detail the routines and demonstration programs available:

Distributed source codes

Nonlinear optimization routine

solvopt The solver for local nonlinear optimization problems

(Matlab, FORTRAN,C)

Utilities and auxiliary routines

apprgrdn Finite difference approximation of the gradient (Matlab,
FORTRAN, C)

soptions Parameter settings (Matlab, FORTRAN)

Include and header files

messages.inc Error and warning strings (FORTRAN specific)

soptions.h Parameter settings (C specific)

Demonstrations and examples

Matlab specific:

initdual Constants for the Shell Dual Problem

dualshf Value of the penalty function of the Shell Dual Problem

dualshg Gradient of the penalty function of the Shell Dual

SolvOpt User's Guide3-2

Problem

dsobjf Value of the objective function of the Shell Dual Problem

dsobjg Gradient of the objective function of the Shell Dual
Problem

dscntf Maximal residual for a set of constraints (Shell Dual
Problem)

dscntg Gradient of the constraint function with the maximal
residual at a point (Shell Dual Problem)

initill Constants for the Ill-conditioned LP problem

illclinf Value of the penalty function of the Ill-conditioned LP
problem

illcling Gradient of the penalty function of the Ill-conditioned LP
problem

initmaxq Constants for Lemarechal's MaxQuad function

maxquadf Value of Lemarechal's MaxQuad function

maxquadg Gradient of Lemarechal's MaxQuad function

shorf Value of Shor's function

shorg Gradient of Shor's function

solvdemo Tutorial walk-through

testf Interface function to Moré set of tests, returns the
objective function value

testg Interface function to Moré set of tests, returns the
gradient

unctest Minimization of supplied test functions

UNCPROBS The directory that contains the M-codes for commonly
used differentiable test functions by Moré et al.

FORTRAN specific:

dualshl0
dualshl1
dualshl2
dualcnst
dualcnt2

Sample problem files for solution of the Shell Dual
Problem

solvopt

Reference 3-3

shor Sample problem file for minimization of Shor's piece-
wise quadratic function

C specific:

nlpsmple Sample problem file for solution of the Shell Dual
Problem

shor Sample problem file for minimization of Shor's piece-
wise quadratic function

The demonstration and sample files are not documented in this manual. They are
partly described in the Tutorial. One can also find detailed comments in the sources
files.

SolvOpt User's Guide3-4

solvopt

Purpose

Find a local optimum for a nonlinear (non-smooth) continuous function or solve a
nonlinear optimization problem in the standard form (NLP)

Usage

Matlab:

[x,f,options] = solvopt(x,fun,grad,options,func,gradc)

FORTRAN:

call
solvopt(n,x,f,fun,flg,grad,options,flfc,func,flgc,gradc)

C:

f = solvopt (n,x,fun,grad,options,func,gradc);

Language specific descriptions
The algorithm is described in Description of the algorithm.

Matlab

The necessary parameters to the function are boldface, the optional ones are
normalface.

x is a vector (row or column) of the coordinates of the starting
point.

fun provides the name (valid character string) of the M-file (M-
function) that returns the objective function value f at a point
x (f may also take the values Inf, -Inf, NaN).

Synopsis: f=fun(x)

grad provides the name (valid character string) of the M-file (M-
function) that returns the gradient vector g (row or column)

solvopt

Reference 3-5

of an objective function at a point x (g may also take the
values Inf, -Inf, NaN).

Synopsis: g=grad(x)

func provides the name (valid character string) of the M-file (M-
function) that returns the maximal residual fc for a set of
constraints at a point x (fc may not take the values Inf, -
Inf, NaN). By passing this parameter to the solver, the user
specifies the constrained optimization mode.

Synopsis: fc=func(x)

gradc provides the name (valid character string) of the M-file (M-
function) that returns the gradient vector gc (row or column)
of a constraint function with the maximal residual at a point
x (gc may not take the values Inf, -Inf, NaN, it also may
not be zero at an infeasible point).

Synopsis: gc=gradc(x)

options is a vector of the optional parameters:

options(1) controls the specific optimization mode and
provides a factor for the first trial step size
(minimization if sign(options(1))=-1,
maximization if sign(options(1))=1).
The default value is -1. Exception:
Maximization is not allowed for a constrained
problem.

options(2) is the relative error for the argument at the
solution point in terms of l∞ -norm (=1.e-4

by default).

options(3) is the required relative error for the objective
function value at the solution (=1.e-6 by
default).

options(4) is a limit for the number of iterations
(=15000 by default).

options(5) controls the output during the optimization
process: 0 means that no intermediate results
are displayed, -1 means no output (suppresses
error and warning messages), N means that the

SolvOpt User's Guide3-6

results for each N-th iteration are displayed.
The default value is 0.

options(6) is the upper bound admissible value for the
maximal residual of a set of constraints. This
means that if the maximal residual at a point is
less then options(6), the point is assumed
to be feasible. The default is 1.e-8.

Changing the following is somewhat delicate:

options(7) is the coefficient of space dilation (=2.5 by
default)

options(8) is the relative lower bound for the step size
used in the difference approximation of
gradients. (=1.e-11 by default).

Values to be returned:

x is the solution point (row or column, depending on how the
routine is called).

f is the value of the objective function at the solution point.

options returns the values of the following counters:

options(9), the number of iterations made,
options(9)<0 means that the termination was abnormal
and provides a specific termination code (these codes are
listed below),

options(10), the number of objective function
evaluations,

options(11), the number of gradient evaluations for the
objective function,

options(12), the number of constraints evaluations
(equals to options(10)),

options(13), the number of gradient evaluations for the
constraints.

More information on the use of the optional parameters may be found in the section
Parameters as arguments (see also Default parameter settings) of the Tutorial.

solvopt

Reference 3-7

As the routine solvopt passes to both the <fun> and the <grad> M-functions
only the current point x, one has to use Matlab global declaration to pass the
needed parameters to these M-functions. One can find an example of the use of
global constants in the section Examples of the Tutorial.

One cannot pass to solvopt any other string, except the names of M-functions,
by arguments fun or grad. The routine solvopt cannot be used for
optimization of expressions if they are passed to the routine as arguments.

FORTRAN

n is the number of variables.

Type: integer

x is an n-dimensional vector of the coordinates of the starting
point at a call to the subroutine and the optimizer at a regular
return.

Type: double precision

f is the objective function value at the solution point at a
regular return.

Type: double precision

fun provides the entry name to the subroutine that calculates the
objective function value f at a point x. If the absolute value
of f is greater then 1.d100, it is assumed (+|-) infinity.

The actual entry name, which is passed as a parameter to the
solver, must be declared as external in the calling routine.

Synopsis: subroutine fun(x,f)
 double precision f

flg is a flag pointing to the way the gradient of the objective
function is calculated: .true. means that the gradients are
calculated analytically by use of subroutine <grad>,
.false. means that the gradients are approximated by the
finite differences.

Type: logical

grad provides the entry name to the subroutine that calculates the
gradient g of the objective function value at a point x.

SolvOpt User's Guide3-8

The actual entry name, which is passed as a parameter to the
solver, must be declared as external in the calling routine.

If analytically calculated gradients are not supplied, the entry
name null is used at a call to the solver.

Synopsis: subroutine grad(x,g)
 double precision g(*)

flfc is a flag used to indicate the constrained optimization mode:
.true. means that the problem is constrained and the
maximal residual of a set of constraints is calculated in the
subroutine <func>, .false. means that the problem is
unconstrained or the user-defined penalty function is
minimized.

Type: logical

func provides the entry name to the subroutine that calculates the
maximal residual fc for a set of constraints at a point x.

The actual entry name, which is passed as a parameter to the
solver, must be declared as external in the calling routine.

If the problem is unconstrained, the entry name null is used
at a call to the solver.

Synopsis: subroutine func(x,fc)
 double precision fc

flgc is a flag pointing to the way the gradients of constraints are
calculated: .true. means that the gradients are calculated
analytically by use of subroutine <gradc>, .false. means
that the gradients are approximated by the finite differences.

flgc may not take the value .true., if flfc=.false..

Type: logical

gradc provides the entry name to the subroutine that calculates the
gradient gc of the constraint function with the maximal
residual at a point x.

The actual entry name, which is passed as a parameter to the
solver, must be declared as external in the calling routine.

If analytically calculated gradients are not supplied, the entry

solvopt

Reference 3-9

name null is used at a call to the solver.

Synopsis: subroutine gradc(x,gc)
 double precision gc(*)

options is a vector of the optional parameters. See the description of
the elements in the Matlab specific section.

Type: double precision

More information on the use of the optional parameters may be found in the section
Parameters as arguments (see also Default parameter settings) of the Tutorial.

Note: The user must take care about possible domain errors in the FORTRAN
intrinsic math-library functions log, log10, sqrt, etc., if they are used in the
user's code, to prevent an abnormal stop.

C

Synopsis:

double solvopt(unsigned short n,

double x[],

double far fun(),

void far grad(),

double options[],

double far func(),

void far gradc())

The function solvopt returns the objective function value at the solution.

n is the number of variables.

x is an n-dimensional vector of the coordinates of the starting
point at a call to the subroutine and the optimizer at a regular
return.

fun provides the entry to the function that calculates the objective
function value f at a point x. If the absolute value of f is
greater then 1.e100, it is assumed (+|-) infinity.

SolvOpt User's Guide3-10

The actual function name, which is passed as a parameter to
the solver, must be declared as far in the calling routine.
Synopsis: double fun(double x[])

grad provides the entry to the function that calculates the gradient
g of the objective function value at a point x.

The actual function name, which is passed as a parameter to
the solver, must be declared as far in the calling routine.

If analytically calculated gradients are not supplied, the
function name null_entry is used at a call to the solver.
Synopsis:
void grad(double x[], double g[])

func provides the entry to the function that returns the maximal
residual fc for a set of constraints at a point x.

The actual function name, which is passed as a parameter to
the solver, must be declared as far in the calling routine.

If the problem is unconstrained, the function name
null_entry is used at a call to the solver.
Synopsis: double func(double x[])

gradc provides the entry to the function that calculates the gradient
gc of the constraint function with the maximal residual at a
point x.

The actual function name, which is passed as a parameter to
the solver, must be declared as far in the calling routine.

If analytically calculated gradients are not supplied, the entry
name null_entry is used at a call to the solver.
Synopsis:
void gradc(double x[], double gc[])

options is a vector of the optional parameters. See the description of
the elements in the Matlab specific section (take into account
that the index starts at 0 in C, therefore, every subtract a unit
from the index).

More information on the use of the optional parameters may be found in the section
Parameters as arguments (see also Default parameter settings) of the Tutorial.

solvopt

Reference 3-11

Notes:

1. The user must include the directive

#include <solvopt.h>

to the calling C-function.

2. The user must take care about possible domain errors in the C intrinsic math-
library functions log, log10, sqrt, etc., if they are used in the user's code, by
providing a function that process these errors and prevents an abnormal stop.

Return codes, error and warning messages
The solver prints an error message at a premature stop, unless printing messages is
suppressed by setting options(5) (options(4) in C) to a negative value. It
starts with the line

SolvOpt error:

A termination warning message is printed at an abnormal stop (when regular
stopping criteria are not fulfilled or the solver detected an irregular case) and starts
with the line

SolvOpt: Termination warning:

Warning messages are printed also during the optimization process, when it is
worth to warn the user about the case. These messages start with the line

SolvOpt warning:

At a regular return from the solver, the program prints the message

SolvOpt: Normal termination

and returns the number of iteration made in options(9) (options(8) in C).

The return codes are listed below together with the corresponding error and
warning messages.

-1:

Allocation Error = number (FORTRAN and C only)
Check the memory available and the parameter n to the solver.

No function name and/or starting point passed to the function. (Matlab
specific)

Check the call to the function solvopt.m.

SolvOpt User's Guide3-12

-2:

Improper space dimension. (FORTRAN and C only)
Check the parameter n to the solver.

Argument X has to be a row or column vector of dimension > 1. (Matlab
specific)

Check the parameter x to the function solvopt.m. The argument must
not be a scalar.

-3:
<fun> returns an empty string. (Matlab specific)

Check the M-function <fun>.

Function value does not exist (NaN is returned). (Matlab specific)
Function equals infinity at the point.

Choose another starting point.

-4:
<grad> returns an empty string. (Matlab specific)

Check the M-function <grad>.

Gradient does not exist (NaN is returned by <grad>). (Matlab specific)
Gradient equals infinity at the starting point.
Gradient equals zero at the starting point.

Choose another starting point.

-5:
<func> returns an empty string. (Matlab specific)

Check the M-function <func>.

<func> returns NaN at the point. (Matlab specific)
<func> returns infinite value at the point.

Check the routine calculating the maximal residual for a set of constraints.

-6:
<gradc> returns an improper vector. Check the dimension. (Matlab
specific)

Check the M-function <gradc>.

<gradc> returns NaN at the point. (Matlab specific)
<gradc> returns infinite vector at the point.
<gradc> returns zero vector at an infeasible point.

Check the routine calculating gradients of the constraints.

-7:
Function is unbounded.

solvopt

Reference 3-13

Usually, this means that the user-defined penalty coefficient is too small
and the penalty function is not lower bounded.

-8:
Gradient is zero at the point, but stopping criteria are not fulfilled.

This means that the solver fails to pass through a (possibly) flat area. The
returned point may not provide the optimizer.

-9:
Iterations limit exceeded.

This may be caused by setting the optional parameter options(4)
(options(3) in C) to a number smaller then the default value. If the
default value is used, this also may be caused by demanding a very small
absolute error for the constraints or by errors in the gradient calculating
routine(s). Finally, the default number of iterations may not be sufficiently
large for a huge-scaled problem.

-11:
Premature stop is possible. Try to re-run the routine from the obtained
point.

The solver returns the code -11 whenever detects a "ravine" with steep
walls and a flat bottom, meaning the level surfaces are almost parallel and
the two successive gradients are opposite to each other. Either the solver
has managed to pass through a "nasty" area or it has not, the program
returns an abnormal code and prints this message. This is done because of
the highest difficulty of the case for the solver.

-12:
Result may not provide the optimum. The function apparently has many
extremum points.

The solver returns the code -12, if the stopping criteria are fulfilled at a
point, which is not the "best" recorded one and sufficiently far from the
recorded point. This also may happen, if the objective function is flat at
the optimum, but more likely the function has many locally extreme
points.

-13:
Result may be inaccurate in the coordinates. The function is flat at the
optimum.

The solver returns the code -13, if the stopping criteria are fulfilled at a
point, where one or more partial derivatives are zero.

-14:

SolvOpt User's Guide3-14

Result may be inaccurate in a function value. The function is extremely
steep at the optimum

The solver returns the code -14, if the stopping criterion (TERMF) is not
fulfilled at a point, but the stepsize is approximately zero. This may be
caused by the use of a very large penalty coefficient and by inaccurate
gradient approximation as well.

The following warning messages may be printed during a run to inform the user on
irregular cases:

Ravine with a flat bottom is detected.

Re-run from recorded point.

The function is flat in certain directions.
Trying to recover by shifting insensitive variables.

Finally, the following warnings provide an additional information on a run, but do
not point to anything abnormal.

Normal re-setting of a transformation matrix.

Re-setting due to the use of a new penalty coefficient.

Calls

apprgrdn, user-supplied routines <fun>, <func>, <grad> and <gradc>.

Examples

See Tutorial.

apprgrdn

Reference 3-15

apprgrdn

Purpose

Gradient approximation by the finite differences.

Usage

Matlab:

g = apprgrdn (x,f,fun,deltax,obj)

FORTRAN:

call apprgrdn (n,g,x,f,fun,deltax,obj)

C:

apprgrdn (n,g,x,f,fun,deltax,obj);

Description

The routine performs the finite difference approximation of the gradient g at a
point x. Normally, it calculates the forward differences (the argument deltax
must provide the signed relative stepsizes at an entry to the routine). If the
argument obj equals 1 (.true.), the routine calculates the central differences for
the coordinates of x that have small (<1) absolute values. It is assumed that the
function value f is calculated at a point x before a call to the routine.
Arguments:
n is the space dimension (FORTRAN and C specific)

Type: FORTRAN: integer
 C: unsigned short

g is the approximated gradient vector returned by the routine.
Type: FORTRAN: double precision

 C: double
x is the current point in the n-dimensional space.

Type: FORTRAN: double precision
 C: double

f is the function value at a point (must be evaluated before a call to
the routine).
Type: FORTRAN: double precision

 C: double

SolvOpt User's Guide3-16

fun provides the entry to the function/subroutine that calculates the
objective/constraint function value f at a point x.

See synopsis in the language specific description section for the
routine solvopt.

deltax is an n-element array of the relative step sizes. The sign of an
element points to the direction along the axis for making a step.
Type: FORTRAN: double precision

 C: double
obj is a flag which allows (if 1 or .true.) or not (if 0 or .false.)

calculating of central differences.
Type: FORTRAN: logical

 C: unsigned short

Calls

user-supplied function/subroutine <fun> or <func> (see description of
solvopt).

soptions

Reference 3-17

soptions

Purpose

Restore the default settings for the optional parameters.

Usage

Matlab:

options = soptions

FORTRAN

call soptions (options)

Description

soptions returns the default values for the optional parameters used by SolvOpt.
A detailed description of the optional parameters appears in the sections
Parameter as arguments and Default parameter settings of the Tutorial part and in
the description of the routine solvopt.
The M-function returns the row
options=[-1,1.e-4,1.e-6,15000,0,1.e-8,2.5,1.e-11].
The FORTRAN subroutine returns the double precision 13-element array with the
same values for the first 8 elements and zeros for the last 5.

solvopt.h
This header file is used with the C version and has the same purpose as FORTRAN
subroutine soptions. Additionally, the function null_entry is declared in this
header file.

solvopt.h must be included to the C function calling to the solvopt:

#include <solvopt.h>

SolvOpt User's Guide3-18

REFERENCES
[LM78] Lemarechal C. and Mifflin R. (eds.), Nonsmooth Optimization,

Pergamon Press, Oxford 1978.

[Ki85] Kiwiel K. C., Methods of Descent for Nondifferentiable Optimization,
Lecture Notes in Mathematics, Vol. 1133, Springer-Verlag, Berlin 1985.

[Sh85] Shor N.Z., Minimization Methods for Non-Differentiable Functions,
Springer Series in Computational Mathematics, Vol. 3,
Springer-Verlag, Berlin 1985.

Acknowledgements

Reference 3-19

Acknowledgements

Since the first version of SolvOpt had become available for free downloading from
the web, the authors have been receiving many comments mostly from those people
doing their research in the area of optimization. The authors appreciated these
fruitful and grounded critical remarks on SolvOpt. Here we express our thanks
particularly to Prof. Arnold Neumaier (University of Vienna) for his valuable and
helpful suggestions.

The authors acknowledge support by FWF (Austria) under grants
M00331-Mat (A. K.) and F003 (A. K. and F. K.).

